微乳的制备:微乳制备应满足3个条件:在油水界面短暂的负界面张力:流动的界面膜:油分子和界面膜的联系和渗透。微乳液自发形成无需外界做功,主要靠该体系中各种成分的匹配。为了寻找这种匹配关系,目前采用HLB值,相转换温度,盐度扫描等方法。
①盐度扫描法 主要是研究离子型乳化剂形成ME的条件。由于电解质可降低包围乳化剂极性端的离子氛围厚度,从而降低乳化剂分子极性瑞之间的排斥力,在形成ME时可使乳化剂更多地分布于油水界面膜上或油相。在非离子型乳化剂形成的溶液中由于乳化剂带有较少的电荷,所以电解质对非离子型乳化剂形成ME的相行为影响不如对离子型乳化剂形成的ME的相行为影响明显。离子型乳化剂在溶液中的分布可用经验公式表述[2]。盐度扫描法是固定乳化剂和助乳化剂的浓度,研究不同浓度的电解质对形成ME时相行为的影响。李于佐等在溴化十四烷基吡啶〔TPB〕为乳化剂,正丁醇为助乳化剂,o/w体积比为1:1时,研究了NaCl对相态的影响,结果表明:当TPB为2.0%、正丁醇为4.0%时.NaCI小于2%时形成下相微乳及剩余油相的二相平衡;NaCI在2.0%一4.5%时.系统为中相微乳、剩余油相和水相的三相平衡;NaCl大于4.5%时,系统为上相微乳和剩余水相的二相平衡。形成此现象的原因,可能是随NaCI浓度的增大,使TPB进入油相的量增加,结果下相ME向上相ME转化。
②相变温度法(PIT) 温度对乳化剂在溶液中分布的影响是一复杂过程,对于离子型乳化剂主要表现在影响其亲水亲油平衡值,以及乳化剂分子之间的静电排斥力和吸引力,从而影响乳化剂在油、水及油水之间的分布。如十二烷基硫酸钠在300K时有利于其在水相中分布,高于或低于此温度有利于其在油相和油水之间分布。对于非离子型乳化剂,温度可以破坏乳化剂和水形成的氢键,从而影响其亲水亲油平衡值,甚至从亲水性乳化剂转变为亲油性乳化剂,或反之。通常温度对非离子型乳化剂的影响大于离子型乳化剂。相变温度法是研究在某温度下乳化剂、助乳化剂及相应的油相形成ME的相行为。以及温度改变对其相行为的影响。如固相ME给药系统即是在370C条件下形成的ME ,在常温下可能已不具备ME的特征,而为固态,但在370C又可恢复到ME的状态。
③HLB值法 在药剂学中应用较多的是单相ME,故盐度扫描法和PIT法的应用受到许多限制。首选方法是根据乳化剂HLB值来研究ME的相态。 ME主要由油、水、乳化剂及助乳化剂组成。在工艺研究中首先应根据油的性质和欲构成ME的类型选择合适的乳化剂。一般认为HLB值在4―7的乳化剂可形成w/o型ME,在14―20可形成o/w型ME,在7―14时根据工艺条件可形成可转相的ME。其次选择合适的助乳化剂。助乳化剂的作用可能是和乳化剂形成复合界面膜,通过助乳化剂的引入可降低乳化剂的相互排斥力及电荷斥力从而使复合凝聚膜具有良好的柔顺性。助乳化剂还可调节乳化剂的HLB值。常用的助乳化剂有低级醇、有机胺、烷基酸及单、双烷基酸甘油酯及聚氧乙烯脂肪酸酯等。一般认为碳链较短的助乳化剂被吸附于乳化剂极性端一例,碳链较长的助乳化剂则嵌入在乳化剂的碳链中间。一般助乳化剂的效果直链的优于有支链的,长链的优于短链的。当助乳化剂链长达到乳化剂碳链的链长时其效果最佳[2]。但也有文献报道当乳化剂的链长(Ls)等于助乳化剂的链长(Ln)与油的链长(Lo)之和。能使w/o型ME具有最大的载水能力。Lo+Ln>Ls,而w/o型ME有过量的水时,可在下层分离出双折射水相;Lo十Ls>Ln可在上层分离出各向同性的富油相(abundant oil phase)[2]。同时碳链的长短与ME乳摘大小相关。在选定了适当的乳化剂及助乳化剂之后,ME的组成通常采用假二元相图进行工艺研究,特别是在药剂学中制备单相ME时。首先固定油相(水相),作水(油)―乳化剂―助乳化剂三元相图,求得组成ME的相区。Aboota―zeli等用月桂酸异丙酯为油相,磷脂为乳化剂,分别以正丙醇、异丙醇、正丁醇和异丁醇为助乳化剂,先求得乳化剂和助乳化剂的最佳比值(用比K值表示),再分别按K为1:1、1.5:1、1.77:1、1.94:l,求得ME的相区。 也可根据需要选几种不同的乳化剂混合使用,可形成固态ME或相变ME。
- 那年的火回答:
- 2008-08-26 16:57